Participants

We had 30 participants from 12 different institutions and 2 different countries.

Name/Institution Title
Abdelrahman, Mahmoud
Otto-von-Guericke University (DE)
A Front Tracking Method for the Ultra-Relativistic Euler Equations
Bispen, Georgij
Johannes Gutenberg-University Mainz (DE)
Large Time Step Finite Volume Methods for the Shallow Water Equations
Borsche, Raul
University of Kaiserslautern (DE)
A centered solver for junctions of hyperbolic equations
Buchmüller, Pawel
University of Bochum (DE)
Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids
Diba, Veronika
University of Kassel (DE)
 
Dreyer, Wolfgang
Weierstraß-Institut Berlin (DE)
On Waves Generated by Phase Transitions
Dumbser, Michael
University of Trento (IT)
New developments in high order finite volume schemes for compressible multi-phase flows
Flaskuehler, Hendrik
University of Bochum (DE)
 
Gil, Diana
University of Hamburg (DE)
 
Glawe, Christoph
University of Cottbus (DE)
Stochastic Multiscale Approaches in One and Three Dimensions
Han, Ee
Otto-von-Guericke University (DE)
On Riemann problem to a simplified blood flow model with discontinuous vessel properties
Hantke, Maren
Otto-von-Guericke University (DE)
 
Kall, Jochen
University of Kaiserslautern (DE)
ADER schemes and high order coupling on networks of hyperbolic PDEs
Kemm, Friedemann
University of Cottbus (DE)
News on the carbuncle
Lähnemann, Christiane
Magdeburg
 
Malkmus Tobias
Albert-Ludwigs-University Freiburg (DE)
Discontinous Galerkin Methods for Non-Newtonian Fluids
Maric, Tomislav
TU Darmstadt (DE)
voFoam - a geometrical Volume-of-Fluid method on unstructured meshes
Munz, Claus-Dieter
University of Stuttgart (DE)
A Discontinuous Galerkin Scheme for Compressible Multi-phase Flow Based on a Ghost-cell Approach
Neusser, Jochen
University of Stuttgart (DE)
A New Numerical Approach to Navier-Stokes-Korteweg Equations for Compressible Two-Phase Flow with Phase Transition
Roggensack, Arne
University of Hamburg (DE)
Analysis of a formal asymptotic limit of the 1D Euler equations on a network with a heat source
Rybicki, Martin
University of Hamburg (DE)
 
Schindler, Patrick
University of Mannheim (DE)
Modeling, simulation and validation of material flow on conveyor belts
Schumacher, Andrea
Albert-Ludwigs-University Freiburg (DE)
Weakly coupled systems of hyperbolic conservation laws on evolving surfaces
Ssemaganda, Vincent
Otto-von-Guericke University (DE)
The Riemann problem for a 1D model of disperse vapor bubbles in a liquid
Thein, Ferdinand
Otto-von-Guericke University (DE)
On the Solution to the Riemann Problem for Compressible Euler Equations for Two Phase Flows with and without Phase Transition
Toro, Tito
University of Trento (IT)
1) The ADER high order approach: a brief review
2) The ADER high order approach: a medical application
Warnecke, Gerald
Otto-von-Guericke University (DE)
 
Warnecke, Guenter
Berlin
 
Yelash, Leonid
Johannes Gutenberg-University Mainz (DE)
Adaptive large time-step discontinuous evolution Galerkin method for multiscale geophysical flows
Zeiler, Christoph
University of Stuttgart (DE)
Curvature Driven Liquid-Vapour Flow with Phase Transition: Exact and Approximative Riemann Solvers

Letzte Änderung: 19.02.2016 - Ansprechpartner: Webmaster